
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

CS397 Final Paper

Northwestern University CS397 Project Group 8

Abstract

Extracting semantic information using graph
networks and syntactical information from de-
pendency parsing have both been shown to be
effective in natural language processing. In
this work, we combine the two and build an
Edge-Conditioned Graph Convolutional Net-
work that takes in dependency parse trees of
sentences to perform sentiment analysis.

1 Introduction

The incorporation of syntax and semantic informa-
tion in large pre-trained BERT-like models has been
a driving force for modern advancements in natural
language processing. More recently, works such as
(Wu et al., 2021) have suggested the incorporation
of graph networks to capture semantic information
on top of what pre-trained language models have
to offer. In addition, the applications of funda-
mental theories in linguistics, such as dependency
parsing have been explored in works like (Xu and
Yang, 2019). In this experiment, we aim to improve
the integration of syntax and semantic information
by combining pre-trained embeddings with depen-
dency parse trees using edge-conditioned Graph
Convolutional Networks.

2 Related Work

2.1 CNN

Past literature have explored and shown the effec-
tiveness of utilizing CNNs for NLP tasks such as
sentiment analysis (Kim, 2014). The earliest meth-
ods represented words using pre-trained word2vec
and later with contextual embedding such as BERT.
These experiments used both fixed and trainable
embeddings, as well as different sizes of convo-
lutional filters. (Safaya et al., 2020) selected the
output of the last four hidden layers of the 12-layer

BERT as the input for CNN. They then used con-
volutional filters of sizes {1,2,3,4,5}, 32 filters of
each size, and max-pooling to extract the feature.

2.2 GCN

(Yao et al., 2018) modeled a whole corpus as a het-
erogeneous graph, whose edges are built by word
co-occurrence, word frequency, or word’s docu-
ment frequency. The embeddings of words and
documents are updated and learned during train-
ing. (Peng et al., 2018) used pre-trained word2vec
as input features and built a graph using word co-
occurrence. Convolution masks are applied to the
sub-graphs. (Lin et al., 2021) built the graph in a
similar way as (Yao et al., 2018), but used BERT
embedding to initialize. The node of documenta-
tion is updated iteratively using GCN, and the final
representations of the document nodes are sent to
the softmax classifier for classification.

3 Dataset

Our main task is to build language models for bi-
nary sentiment classification of texts in movie re-
views. We trained on the IMDB Movie Review
Dataset (Maas et al., 2011) for sentence classifica-
tion. The full dataset contains 50,000 reviews from
IMDB. The IMDB dataset only contains polarized
reviews that score either lower than 4 (negative)
or higher than 7 (really positive) on a scale of 10.
As the movie reviews in the IMDB dataset have
variable lengths, we padded each review to the max-
imum length (set to 256 in our experiment) so that
it can be used as input to our models.

4 Model

4.1 Embedding

Our models and baselines use a smaller version
of BERT, which is explored in (Turc et al., 2019).
We are not experimenting with the more popular



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

BERT base and BERT large models because we
are restricted to the computational resources we
have. Specifically, our smaller version of BERT
has 10 hidden layers (Transformer blocks), 512 hid-
den size, and 8 self-attention heads. This version
of BERT only has around 40 million parameters,
compared to 110 million parameters in BERT base
and 340 million parameters in BERT large. The
model input is preprocessed using a vocabulary for
English extracted from Wikipedia and BooksCor-
pus. All text inputs are transformed into lower case
before tokenization.

4.2 BERT + CNN
In this model, we use BERT to get contextual em-
bedding of input tokens and use CNN as a classifier.
Due to the limitation of our computers, we use a
small BERT with embedding size 512 and 10 hid-
den layers. The biggest difference between this
model and other models is that it uses not only the
final output of BERT but also the outputs of hid-
den layers. After trying various combinations, we
take the last 4 hidden layers of BERT as the input
channels of CNN and use convolution filters of size
[3,5,7] with 64 of each size. Then, it goes through
a max pooling and concatenation. Finally, it goes
through a dropout and dense layer.

4.3 BERT + Sentence-level GCN
We build the GCN for sentence-level as the whole
dataset is a graph, in which a sentence is repre-
sented as a node and the similarity of nodes repre-
sents edges between them. The prediction is also
in the form of a graph for the sentiment of all the
sentences. In the model, the BERT embedding
of the sentence is used as the node feature, and
the cosine similarity of node features is used as
the similarity measure to compare embeddings for
building the edges, calculated by the NSL (Neural
Structured Learning) module in TensorFlow with
a similarity threshold to discard dissimilar edges.
The NSL graph then is converted into a graph in
Spectral (Grattarola and Alippi, 2020), which is
an open-source Python library for building graph
neural networks. The graph is then fed into the
GCN model described in (Kipf and Welling, 2016).
It uses 2 GCNConv layers and 64 hidden channels
in the first GCNConv layer, the Relu activation
function for the first GCNConv layer, and SoftMax
activation function for the second GCNConv layer,
with learning rate of 0.5, dropout rate of 0.2 and
L2 regularization strength of 2.5e-4.

4.4 Dependency Parsing

Dependency parsing of a sentence contains infor-
mation about its grammatical structure. Specifi-
cally, dependency parsing establishes relationships
between the “head” words and the ”dependent”
words that modify heads. To obtain dependency
parse trees, we use a transition-based parser de-
scribed in (Chen and Manning, 2014). The de-
pendency relationships generated are universal de-
pendencies, which is a framework for consistent
annotation of grammar across languages. All de-
pendencies in this experiment were generated using
the package stanza (Qi et al., 2020). See Figure 1
for an example of the generated dependency pars-
ing.

4.5 GCN with Dependency Parsing

Our word-based graph model uses words as nodes
and dependency relationships as edges to represent
sentences as graphs. We perform graph convo-
lutions, which is introduced in (Kipf and Welling,
2016) on the graphs. The Graph Convolutional Net-
works, or GCNs, rely on message passing, which
means nodes receive the information from their
neighbors and perform a convolution to generate
a new node feature. Using a sequence of message
passing layers, information can be passed beyond
the immediate neighborhood. Both the nodes and
the edges have their own features, represented by X
and E. The presence of a relation between nodes
is represented by the adjacency matrix A. Each
review is first passed to the stanza dependency re-
lation parser to get the list of words and relations.
The words are then processed by an embedding to
generate the node features.

While we planned to generate node features us-
ing BERT embeddings, the total computational cost
was much higher than expected. In addition, the
syntactic information that is encoded by BERT is
possibly redundant here as we are representing syn-
tax using dependency parsing. We scoped down
our experiment and used 16-dimensional custom
embeddings instead of the 512-dimensional small
BERT. The custom embeddings are from a model
trained on the same IMDB reviews from the train-
ing set. The 51 different types of edge relations are
represented by a one-hot embedding E. Alterna-
tively, we could also have used the type of edge to
inform the edge weights in the adjacency matrix.

For our experiment, we used one edge-
conditioned graph convolution layer (ECC) fol-



3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 1: A generated dependency parsing graph using the movie review on the left.

lowed by an average pooling, a dense, a dropout,
and the output layer (Simonovsky and Komodakis,
2017). More graph convolution layers may be able
to improve performance however training costs be-
come increasingly expensive. Note that we utilized
Spektral’s implementation of ECC, which does not
contain the batch normalization layer. Our model
did not include the graph coarsening layers in (Si-
monovsky and Komodakis, 2017).

4.6 Baseline Models

A simple baseline we have built takes the pooled
output of our smaller BERT and feed it into a feed
forward neural network. The feed forward model is
consisted of a 16 unit dense layer, a dropout layer
with 0.3 dropout rate, and the output layer. For this
model, we use the RMSprop optimizer described
in (Hinton, 2012) and a binary cross entropy loss.

Another baseline we implemented takes the se-
quence output of the smaller BERT and uses it as
input into a bidirectional LSTM layer (Hochreiter
and Schmidhuber, 1997). The LSTM layer con-
tains 64 units. We feed the output from the LSTM
layer into a max pooling layer, a dropout layer with
rate of 0.5, a feedforward layer with 32 units, an-
other dropout layer with rate of 0.5, and the final
output layer. We use the RMSprop optimizer and a
binary cross entropy loss.

5 Results

5.1 Experiment

For this experiment, we trained and evaluate our
models on the full IMDB movie review dataset. We

used 20,000 reviews for training, 5,000 for valida-
tion, and 25,000 for testing. We trained baseline
models, CNN, and GCN sentence-level models
with the smaller BERT we mentioned earlier. We
freeze the weights of the smaller BERT to reduce
computation cost. For the GCN model with de-
pendency parsing, we used 16-dimensional custom
embeddings. The primary metric for our experi-
ment is accuracy. The effectiveness of the accuracy
metric will be dependent on the balance of labels
in the dataset.

5.2 IMDB Summary

We found that there were equal amounts of pos-
itive and negative reviews in the dataset, so no
additional imbalanced learning or evaluation tech-
niques were utilized for the experiment. The most
challenging reviews for the models to classify were
long reviews containing both positive and negative
comments on the movie.

5.3 Model Performance

Table 1 shows the accuracy of each model for bi-
nary sentiment classification on the IMDB test
set. The word-level GCN with dependency pars-
ing achieved the highest performance. In addition,
the edge-conditioned GCN outperformed the stan-
dard GCN which does not take edge labels into
account. Surprisingly, the sentence-level GCN did
not converge and yielded very low accuracy val-
ues. We also found that our accuracy levels were
still significantly lower than SOTA, this is likely
because our pre-trained embeddings were much
smaller than the BERT-base/BERT-large and the



4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 2: Model architecture of the edge-conditioned GCN with dependency parsing model.

Model Train p. Total p. Acc.
Feed Forward 8k 47M 76.30%
BiLSTM 300k 47M 84.73%
CNN 7.9M 55M 84.50%
GCN sent. 33k 47M 65.68%
GCN dep. 561 500k 85.32%
GCN dep.(ECC) 20k 480k 87.36%

Table 1: Results for all models, Train p. stands for
trainable parameters

600D word2vec used in previous works on IMDB
sentiment analysis.

5.4 Edge Labels

We hypothesized that using one-hot encoded depen-
dency relation as edge labels would improve the
performance of the model but the results did not
completely support this. While the ECC-GCN did
outperform the standard GCN, we found that the
masking of edge labels did not result in a hypoth-
esized decrease in testing performance for edge-
conditioned GCN. After masking out all edge la-
bels, the test accuracy for ECC-GCN was 87.49%,
slightly higher than the performance of the same
model with edge labels 87.36%.

6 Discussion

Looking at the sentence-level GCN, the perfor-
mance is the weakest among all models. This is
likely due to the graph being constructed using
cosine similarly and the over-smoothing of convo-
lutional layers. Compared to the word-level models
where the convolution is within each sentence, in

sentence-level GCN the entire data set is feed into
the model as a single graph with each sentence as a
node. In order to capture the global state within this
large volume, the convolution model needs to in-
crease its depth. There are no edge types for a graph
constructed using cosine similarity, creating neigh-
borhoods with simple relation that makes it easy for
the graph to be over-smoothed by when the neigh-
borhood features are aggregating as a weighted
sum in the GCN.

To tackle this issue, we could switch to Graph
Attention Networks (GAT), as attention mechanism
which could specify different types of labels and
weights to edges between different neighbor nodes,
thus could capture the relation between neighbors
relatively without being smoothed by the aggre-
gation. The Graph Star Net paper proposed us-
ing multi-head attention and a star transformer
mechanism to capture local and long-range relation-
ships without increasing the model depth, achiev-
ing 96.0% accuracy on the IMDB task (Haonan
et al., 2019).

While the ECC-GCN model performed better
than baseline, our analysis showed that edge fea-
tures represented as one-hot encoded vectors did
not contribute to this. Our proposed method of
representing different dependency relation types
was not sufficient for informing the model of re-
view sentiment. There could be a variety of reasons
for why this approach did not work for edge types.
One possibility is that complexity of the kernel net-
work and the amount of data was not sufficient for
learning the representations of 51 different types
of dependency relations. It could also be that the



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

task of sentiment analysis alone is not enough to
train a model to learn the meaning of dependency
relation labels. For future experiments, the edge
types should be converted to vectors using either
pre-trained embedding models or graph models
which can co-embed both edges and nodes (Jiang
et al., 2020).

One thing that could allow better understand
how the graph models makes decisions is to use
the GNNExplainer model, detailed in (Ying et al.,
2019), to explain graph level predictions. The GN-
NExplainer model can produce a sub-graph and
a subset of node features that are critical to the
prediction. We could have used this model to un-
derstand what specific parts of a sentence is crucial
to sentiment analysis. However, we did not get this
to work as the GNNExplainer model does not work
on edge-conditioned graphs, as it does not consider
any edge feature information. Future work could
try to modify the GNNExplainer model to work on
edge-conditioned graphs.

7 Conclusion

In this work, we introduced a Graph Convolution
Network that performs sentiment analysis on de-
pendency parse trees of movie reviews. We also
explored both a standard graph convolution layer
and an edge-conditioned convolution layer that
incorporates dependency relations as edge labels.
The source code and notebooks can be found at
https://github.com/xiaojoey/CS397Project.

References

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar. Association for Com-
putational Linguistics.

Daniele Grattarola and Cesare Alippi. 2020. Graph
neural networks in tensorflow and keras with spektral.

Lu Haonan, Seth H. Huang, Tian Ye, and Guo Xiuyan.
2019. Graph star net for generalized multi-task learn-
ing.

Hinton. 2012. Overview of mini-batch gradient descent.
University Lecture.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Xiaodong Jiang, Ronghang Zhu, Pengsheng Ji, and
Sheng Li. 2020. Co-embedding of nodes and edges
with graph neural networks.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification.

Thomas N. Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn:
Transductive text classification by combining gcn and
bert.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1063–1072, Republic and Canton
of Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. Kuisail at semeval-2020 task 12: Bert-cnn
for offensive speech identification in social media.

Martin Simonovsky and Nikos Komodakis. 2017. Dy-
namic edge-conditioned filters in convolutional neu-
ral networks on graphs.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better: On
the importance of pre-training compact models.

Zhaofeng Wu, Hao Peng, and Noah A. Smith. 2021. In-
fusing finetuning with semantic dependencies. Trans-
actions of the Association for Computational Linguis-
tics, 9:226–242.

Yinchuan Xu and Junlin Yang. 2019. Look again at the
syntax: Relational graph convolutional network for
gendered ambiguous pronoun resolution.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2018.
Graph convolutional networks for text classification.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zit-
nik, and Jure Leskovec. 2019. Gnnexplainer: Gener-
ating explanations for graph neural networks.

https://github.com/xiaojoey/CS397Project
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.48550/ARXIV.2006.12138
https://doi.org/10.48550/ARXIV.2006.12138
https://doi.org/10.48550/ARXIV.1906.12330
https://doi.org/10.48550/ARXIV.1906.12330
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.2010.13242
https://doi.org/10.48550/ARXIV.2010.13242
https://doi.org/10.48550/ARXIV.1408.5882
https://doi.org/10.48550/ARXIV.1408.5882
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.48550/ARXIV.2105.05727
https://doi.org/10.48550/ARXIV.2105.05727
https://doi.org/10.48550/ARXIV.2105.05727
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.48550/ARXIV.2003.07082
https://doi.org/10.48550/ARXIV.2003.07082
https://doi.org/10.48550/ARXIV.2003.07082
https://doi.org/10.48550/ARXIV.2007.13184
https://doi.org/10.48550/ARXIV.2007.13184
https://doi.org/10.48550/ARXIV.1704.02901
https://doi.org/10.48550/ARXIV.1704.02901
https://doi.org/10.48550/ARXIV.1704.02901
https://doi.org/10.48550/ARXIV.1908.08962
https://doi.org/10.48550/ARXIV.1908.08962
https://doi.org/10.1162/tacl_a_00363
https://doi.org/10.1162/tacl_a_00363
https://doi.org/10.48550/ARXIV.1905.08868
https://doi.org/10.48550/ARXIV.1905.08868
https://doi.org/10.48550/ARXIV.1905.08868
https://doi.org/10.48550/ARXIV.1809.05679
https://doi.org/10.48550/ARXIV.1903.03894
https://doi.org/10.48550/ARXIV.1903.03894

