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Abstract

Extracting semantic information using graph
networks and syntactical information from de-
pendency parsing have both been shown to be
effective in natural language processing. In
this work, we combine the two and build an
Edge-Conditioned Graph Convolutional Net-
work that takes in dependency parse trees of
sentences to perform sentiment analysis.

1 Introduction

The incorporation of syntax and semantic informa-
tion in large pre-trained BERT-like models has been
a driving force for modern advancements in natural
language processing. More recently, works such as
(Wu et al., 2021) have suggested the incorporation
of graph networks to capture semantic information
on top of what pre-trained language models have
to offer. In addition, the applications of funda-
mental theories in linguistics, such as dependency
parsing have been explored in works like (Xu and
Yang, 2019). In this experiment, we aim to improve
the integration of syntax and semantic information
by combining pre-trained embeddings with depen-
dency parse trees using edge-conditioned Graph
Convolutional Networks.

2 Related Work

2.1 CNN

Past literature have explored and shown the effec-
tiveness of utilizing CNNs for NLP tasks such as
sentiment analysis (Kim, 2014). The earliest meth-
ods represented words using pre-trained word2vec
and later with contextual embedding such as BERT.
These experiments used both fixed and trainable
embeddings, as well as different sizes of convo-
lutional filters. (Safaya et al., 2020) selected the
output of the last four hidden layers of the 12-layer

BERT as the input for CNN. They then used con-
volutional filters of sizes {1,2,3,4,5}, 32 filters of
each size, and max-pooling to extract the feature.

2.2 GCN

(Yao et al., 2018) modeled a whole corpus as a het-
erogeneous graph, whose edges are built by word
co-occurrence, word frequency, or word’s docu-
ment frequency. The embeddings of words and
documents are updated and learned during train-
ing. (Peng et al., 2018) used pre-trained word2vec
as input features and built a graph using word co-
occurrence. Convolution masks are applied to the
sub-graphs. (Lin et al., 2021) built the graph in a
similar way as (Yao et al., 2018), but used BERT
embedding to initialize. The node of documenta-
tion is updated iteratively using GCN, and the final
representations of the document nodes are sent to
the softmax classifier for classification.

3 Dataset

Our main task is to build language models for bi-
nary sentiment classification of texts in movie re-
views. We trained on the IMDB Movie Review
Dataset (Maas et al., 2011) for sentence classifica-
tion. The full dataset contains 50,000 reviews from
IMDB. The IMDB dataset only contains polarized
reviews that score either lower than 4 (negative)
or higher than 7 (really positive) on a scale of 10.
As the movie reviews in the IMDB dataset have
variable lengths, we padded each review to the max-
imum length (set to 256 in our experiment) so that
it can be used as input to our models.

4 Model

4.1 Embedding

Our models and baselines use a smaller version
of BERT, which is explored in (Turc et al., 2019).
We are not experimenting with the more popular
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BERT base and BERT large models because we
are restricted to the computational resources we
have. Specifically, our smaller version of BERT
has 10 hidden layers (Transformer blocks), 512 hid-
den size, and 8 self-attention heads. This version
of BERT only has around 40 million parameters,
compared to 110 million parameters in BERT base
and 340 million parameters in BERT large. The
model input is preprocessed using a vocabulary for
English extracted from Wikipedia and BooksCor-
pus. All text inputs are transformed into lower case
before tokenization.

4.2 BERT + CNN
In this model, we use BERT to get contextual em-
bedding of input tokens and use CNN as a classifier.
Due to the limitation of our computers, we use a
small BERT with embedding size 512 and 10 hid-
den layers. The biggest difference between this
model and other models is that it uses not only the
final output of BERT but also the outputs of hid-
den layers. After trying various combinations, we
take the last 4 hidden layers of BERT as the input
channels of CNN and use convolution filters of size
[3,5,7] with 64 of each size. Then, it goes through
a max pooling and concatenation. Finally, it goes
through a dropout and dense layer.

4.3 BERT + Sentence-level GCN
We build the GCN for sentence-level as the whole
dataset is a graph, in which a sentence is repre-
sented as a node and the similarity of nodes repre-
sents edges between them. The prediction is also
in the form of a graph for the sentiment of all the
sentences. In the model, the BERT embedding
of the sentence is used as the node feature, and
the cosine similarity of node features is used as
the similarity measure to compare embeddings for
building the edges, calculated by the NSL (Neural
Structured Learning) module in TensorFlow with
a similarity threshold to discard dissimilar edges.
The NSL graph then is converted into a graph in
Spectral (Grattarola and Alippi, 2020), which is
an open-source Python library for building graph
neural networks. The graph is then fed into the
GCN model described in (Kipf and Welling, 2016).
It uses 2 GCNConv layers and 64 hidden channels
in the first GCNConv layer, the Relu activation
function for the first GCNConv layer, and SoftMax
activation function for the second GCNConv layer,
with learning rate of 0.5, dropout rate of 0.2 and
L2 regularization strength of 2.5e-4.

4.4 Dependency Parsing

Dependency parsing of a sentence contains infor-
mation about its grammatical structure. Specifi-
cally, dependency parsing establishes relationships
between the “head” words and the ”dependent”
words that modify heads. To obtain dependency
parse trees, we use a transition-based parser de-
scribed in (Chen and Manning, 2014). The de-
pendency relationships generated are universal de-
pendencies, which is a framework for consistent
annotation of grammar across languages. All de-
pendencies in this experiment were generated using
the package stanza (Qi et al., 2020). See Figure 1
for an example of the generated dependency pars-
ing.

4.5 GCN with Dependency Parsing

Our word-based graph model uses words as nodes
and dependency relationships as edges to represent
sentences as graphs. We perform graph convo-
lutions, which is introduced in (Kipf and Welling,
2016) on the graphs. The Graph Convolutional Net-
works, or GCNs, rely on message passing, which
means nodes receive the information from their
neighbors and perform a convolution to generate
a new node feature. Using a sequence of message
passing layers, information can be passed beyond
the immediate neighborhood. Both the nodes and
the edges have their own features, represented by X
and E. The presence of a relation between nodes
is represented by the adjacency matrix A. Each
review is first passed to the stanza dependency re-
lation parser to get the list of words and relations.
The words are then processed by an embedding to
generate the node features.

While we planned to generate node features us-
ing BERT embeddings, the total computational cost
was much higher than expected. In addition, the
syntactic information that is encoded by BERT is
possibly redundant here as we are representing syn-
tax using dependency parsing. We scoped down
our experiment and used 16-dimensional custom
embeddings instead of the 512-dimensional small
BERT. The custom embeddings are from a model
trained on the same IMDB reviews from the train-
ing set. The 51 different types of edge relations are
represented by a one-hot embedding E. Alterna-
tively, we could also have used the type of edge to
inform the edge weights in the adjacency matrix.

For our experiment, we used one edge-
conditioned graph convolution layer (ECC) fol-
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Figure 1: A generated dependency parsing graph using the movie review on the left.

lowed by an average pooling, a dense, a dropout,
and the output layer (Simonovsky and Komodakis,
2017). More graph convolution layers may be able
to improve performance however training costs be-
come increasingly expensive. Note that we utilized
Spektral’s implementation of ECC, which does not
contain the batch normalization layer. Our model
did not include the graph coarsening layers in (Si-
monovsky and Komodakis, 2017).

4.6 Baseline Models

A simple baseline we have built takes the pooled
output of our smaller BERT and feed it into a feed
forward neural network. The feed forward model is
consisted of a 16 unit dense layer, a dropout layer
with 0.3 dropout rate, and the output layer. For this
model, we use the RMSprop optimizer described
in (Hinton, 2012) and a binary cross entropy loss.

Another baseline we implemented takes the se-
quence output of the smaller BERT and uses it as
input into a bidirectional LSTM layer (Hochreiter
and Schmidhuber, 1997). The LSTM layer con-
tains 64 units. We feed the output from the LSTM
layer into a max pooling layer, a dropout layer with
rate of 0.5, a feedforward layer with 32 units, an-
other dropout layer with rate of 0.5, and the final
output layer. We use the RMSprop optimizer and a
binary cross entropy loss.

5 Results

5.1 Experiment

For this experiment, we trained and evaluate our
models on the full IMDB movie review dataset. We

used 20,000 reviews for training, 5,000 for valida-
tion, and 25,000 for testing. We trained baseline
models, CNN, and GCN sentence-level models
with the smaller BERT we mentioned earlier. We
freeze the weights of the smaller BERT to reduce
computation cost. For the GCN model with de-
pendency parsing, we used 16-dimensional custom
embeddings. The primary metric for our experi-
ment is accuracy. The effectiveness of the accuracy
metric will be dependent on the balance of labels
in the dataset.

5.2 IMDB Summary

We found that there were equal amounts of pos-
itive and negative reviews in the dataset, so no
additional imbalanced learning or evaluation tech-
niques were utilized for the experiment. The most
challenging reviews for the models to classify were
long reviews containing both positive and negative
comments on the movie.

5.3 Model Performance

Table 1 shows the accuracy of each model for bi-
nary sentiment classification on the IMDB test
set. The word-level GCN with dependency pars-
ing achieved the highest performance. In addition,
the edge-conditioned GCN outperformed the stan-
dard GCN which does not take edge labels into
account. Surprisingly, the sentence-level GCN did
not converge and yielded very low accuracy val-
ues. We also found that our accuracy levels were
still significantly lower than SOTA, this is likely
because our pre-trained embeddings were much
smaller than the BERT-base/BERT-large and the
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Figure 2: Model architecture of the edge-conditioned GCN with dependency parsing model.

Model Train p. Total p. Acc.
Feed Forward 8k 47M 76.30%
BiLSTM 300k 47M 84.73%
CNN 7.9M 55M 84.50%
GCN sent. 33k 47M 65.68%
GCN dep. 561 500k 85.32%
GCN dep.(ECC) 20k 480k 87.36%

Table 1: Results for all models, Train p. stands for
trainable parameters

600D word2vec used in previous works on IMDB
sentiment analysis.

5.4 Edge Labels

We hypothesized that using one-hot encoded depen-
dency relation as edge labels would improve the
performance of the model but the results did not
completely support this. While the ECC-GCN did
outperform the standard GCN, we found that the
masking of edge labels did not result in a hypoth-
esized decrease in testing performance for edge-
conditioned GCN. After masking out all edge la-
bels, the test accuracy for ECC-GCN was 87.49%,
slightly higher than the performance of the same
model with edge labels 87.36%.

6 Discussion

Looking at the sentence-level GCN, the perfor-
mance is the weakest among all models. This is
likely due to the graph being constructed using
cosine similarly and the over-smoothing of convo-
lutional layers. Compared to the word-level models
where the convolution is within each sentence, in

sentence-level GCN the entire data set is feed into
the model as a single graph with each sentence as a
node. In order to capture the global state within this
large volume, the convolution model needs to in-
crease its depth. There are no edge types for a graph
constructed using cosine similarity, creating neigh-
borhoods with simple relation that makes it easy for
the graph to be over-smoothed by when the neigh-
borhood features are aggregating as a weighted
sum in the GCN.

To tackle this issue, we could switch to Graph
Attention Networks (GAT), as attention mechanism
which could specify different types of labels and
weights to edges between different neighbor nodes,
thus could capture the relation between neighbors
relatively without being smoothed by the aggre-
gation. The Graph Star Net paper proposed us-
ing multi-head attention and a star transformer
mechanism to capture local and long-range relation-
ships without increasing the model depth, achiev-
ing 96.0% accuracy on the IMDB task (Haonan
et al., 2019).

While the ECC-GCN model performed better
than baseline, our analysis showed that edge fea-
tures represented as one-hot encoded vectors did
not contribute to this. Our proposed method of
representing different dependency relation types
was not sufficient for informing the model of re-
view sentiment. There could be a variety of reasons
for why this approach did not work for edge types.
One possibility is that complexity of the kernel net-
work and the amount of data was not sufficient for
learning the representations of 51 different types
of dependency relations. It could also be that the
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task of sentiment analysis alone is not enough to
train a model to learn the meaning of dependency
relation labels. For future experiments, the edge
types should be converted to vectors using either
pre-trained embedding models or graph models
which can co-embed both edges and nodes (Jiang
et al., 2020).

One thing that could allow better understand
how the graph models makes decisions is to use
the GNNExplainer model, detailed in (Ying et al.,
2019), to explain graph level predictions. The GN-
NExplainer model can produce a sub-graph and
a subset of node features that are critical to the
prediction. We could have used this model to un-
derstand what specific parts of a sentence is crucial
to sentiment analysis. However, we did not get this
to work as the GNNExplainer model does not work
on edge-conditioned graphs, as it does not consider
any edge feature information. Future work could
try to modify the GNNExplainer model to work on
edge-conditioned graphs.

7 Conclusion

In this work, we introduced a Graph Convolution
Network that performs sentiment analysis on de-
pendency parse trees of movie reviews. We also
explored both a standard graph convolution layer
and an edge-conditioned convolution layer that
incorporates dependency relations as edge labels.
The source code and notebooks can be found at
https://github.com/xiaojoey/CS397Project.
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